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Synopsis 
An attempt was made to evaluate the apparent elahtic coilstant of a two-phase system 

The modulus G is expressed as follows: G from those of the components of the system. 

where GI and Gz are the shear moduli of the suspending medium and the suspended 
particles, respectively, ~1 is the Poisson ratio of the medium, and v is the volume fraction 
of the particles. The results for modulus were extended to dynamic viscoelasticity by 
the corresponding principle. Experimental verifications with dynamic viscoelasticity 
data were conducted for the system of styrene-acrylonitrile copolymer interpolymerized 
with polybutadiene particles. For shear viscosity comparisons with experiment Were 
made for the system linear polyethylene-polybutene-1. 

INTRODUCTION 

Several formulas have been presented to calculate the elastic modulus 
or viscosity of a two-phase system from those of its components. Mac- 
kenzie' calculated the elastic constants of a solid containing spherical 
holes, and Smallwood2 presented a formula for evaluating the Young's 
modulus of a system, such as a rubber, in which small rigid spheres were 
embedded. Their formulas are valid only when the ratio of elastic constant 
of one component to that of the other is infinitesimal or infinite. Kerner3 
presented the expression for the gross bulk and shear moduli of a com- 
posite system consisting of two components with arbitrary values of 
modulus. His method is based on the averaging procedure of Bruggeman4 
and an analysis of the effect of a uniform hydrostatic compression and of a 
uniform tension acting on a particle. Recently, Okano5 reported the same 
results as that of Kerner, but the procedure of Okano is not described in de- 
tail in his short report. 

In this paper, the general formulas for evaluating the apparent elastic 
constants of a two-phase system consisting of spherical particles and their 
suspending medium are presented, and the results are extended to dynamic 
viscoeluticity by the corresponding principle. The niethod of deduction 
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of the apparent elastic constants is different from that of Kerner. Al- 
though the result obtained was found to be the same as Kerner’s in the 
case of shear modulus, Poisson’s ratio was expressed in a different form. 
The formulas obtained were surveyed by their application to the dynamic 
viscoelasticity of the real system consisting of styreneacrylonitrile co- 
polymer in which the rubber particles of polybutadiene are homogeneously 
dispersed by interpolymerization. 

Since the Navier-Stokes equation reduces to an expression similar to 
the differential equation of displacement under appropriate conditions, 
the gross shear viscosity of a two-phase system consisting of the dispersing 
spherical particles and their suspending medium was calculated from the 
viscosity of the components, and the results were compared with the ex- 
perimental data obtained on the system of polyethylene and polybutene-1. 

THEORETICAL 

Consider a spherical isotropic elastic particle of radius a embedded in a 
continuous isotropic elastic medium with known elastic constants. When 
the medium is stretched by a simple tension T, the displacement and the 
stress in the vicinity of the particle are calculated. The differential equa- 
tion of displacement in equilibrium are given by eqs. (1) : 

1 b e  
1 - 21, b x  

AU + ___ - = 0 

1 b e  
A v + - - -  - 0  

1 - 2v a y  

1 b e  
1 - 2 v  bz 

A z u + - -  = O  

where x ,  y) z are the Cartesian coordinates and u, v, zu are the vector com- 
ponents of displacement at  the point x)y,z. v is the Poisson’s ratio of the 
medium, e is the volume dilatation, and A is the Laplacian operator. 

The boundary condition first arises from the fact that the influence of the 
particle will extend only over a limited region of the medium. The dis- 
placement at a point far from the particle will correspond to that caused by 
the simple tension T .  The next boundary condition is that the particle 
and the medium are completely bounded by each other at their intersurface. 
These boundary conditions are expressed by eqs. (2) and (3). 

A t r =  a: 

(2) = 2G(l  + v d T  
e = o  

= - 2 v , G ( l  + v1)T 
(t;?) 0 - T/? 
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At r = a: 

where r ,  8, cp are the spherical coordinates. The origin of the coordinates 
is located at the center of the particle, and the polar axis is oriented parallel 
to the direction of stretching. u,, Ue, u, are the components of displacement 
in the spherical coordinates. (T and r are the normal and the shear stress, 
respectively. The quantities designated by the subscript 1 are those for 
the medium, and the quantities designated by 2 are for the particle. 

Under the boundary conditions mentioned above, the displacement and 
the stress are derived from eq. (1) as follows. 

For the region of r 2 a: 

-1 + 2(1 - 2Vl) 
7.5 

rT sin 0 cos 6 

2Gl uei = 

Bi Ci 
r3  1.5 

- 2(1 - 3v l )  - + 4 - + cos2 e 
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T 

Fig. 1. hlodel represeiitatioii of two-composite system. The hatched portioll represetits 
the dispersed particles in the suspeilding medium. 

For the region r 5 a: 

rT sir, e cos e 
ug2 = [3A, + 2(1 - 2v2)B2] 

2Gz 
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3(1 - 1~1) 

4(1 + vi)[l + v2 + 2(1 - 24(Gi/Gz)l 
Bt = - (20) 

The terms of r3 and r-5 in eqs. (4), ( 5 ) ,  (7), and (8) come from the per- 
turbation caused by the particle dispersed in the medium. 

I n  order to find the elastic constants of the composite system, we now 
consider a spherical domain of radius R in medium 1, in which the particles 
of radius a are assumed to be homogeneously dispersed (Fig. 1). The 
radius of the spherical domain R is large enough compared with the radius 
of the particle a. 

If the particles are not dispersed in the spherical domain, the field of 
displacement a t  a point P is uniform. The distance r of the point P from 
the origin 0 is very large compared to the radius of the spherical domain. 
However, the field a t  the point P is perturbed by the existence of n dis- 
persed particles in the domain. The materials in the spherical domain 
with n dispersed particles is assumed to be an isotropic material having the 
apparent shear modulus G and Poisson’s ratio Y. The perturbation is 
regarded as AU that is caused by spherical material of radius R located a t  
the point 0. On the other hand, if the interactions among the small 
particles in the domain are neglected, the perturbation is also n times as 
large as the effect Au, which is independently caused by each small particle 
in the domain. These relations are expressed as follows: 

AU = nAu (21) 

Since eq. (21) holds for any arbitrary distance r satisfying the condition 

A = nAl (22) 

B = nB1 (23) 

C = nC1 (24) 

t,hnt, r >> R, eq. (21) can be rewritten by the aid of eqs. (4), ( E i ) ,  and (6) : 

where A ,  B, and C are the quantities when Gz, v2, and r in eqs. (16) to 
(18) are replaced by G, Y, and R, respectively. Equations (22)-(24) do 
not simultaneously hold for any arbitrary n. Under the condition that 
r >> R, the effect of the term of r-5 upon the displacement a t  the point P 
is very small and negligible compared with the effect of T - ~ .  Therefore, 
eq. (24) need not be considered. By putting eqs. (16) and (17) into eqs. 
(22) and (23) and arranging them, we obtain eqs. (25) and (26) : 
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Gl 
GG.2 

- (1 + 5v1)(1 - 2v2) ~ + (1 + 5 U l  - Dv2 - 5 V l V .  

where the volume fraction of the dispersed particles to the total volume in 
the spherical domain is given by u = na3/R3. Equations (25) and (26) 
give the effective shear modulus and the Poisson’s ratio of the composite 
system consisting of the dispersed particles and their suspending medium. 
When the media of composite system are noncompressible materials, that is 
vl = v2 = 0.5, the tensile modulus of the system E is given by eq. (27) : 

E = E1[3Ei + 2E2 - 3(Ei - E2)~]/[3Ei + 2E2 + 2(E1 - E Z ) ~ ]  (27) 

where El and E2 are the moduli of the medium and the particles, respec- 
tively. 

APPROXIMATION 

Since the interaction between the particles has been ignored in deriving 
eqs. (25) and (26)) the volume fraction v should satisfy the condition that 

u << 1 (28) 
If the terms of v2 and higher powers in eqs. (25) and (26) are neglected, they 
reduce to eqs. (29) and (30), respectively. 

When the very hard particles are dispersed in the medium, that is G1 << Gz, 
the apparent shear modulus and the Poisson’s ratio of the system are given 
by eqs. (31) and (32) respectively. 
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1 
Substituting 0.5 for v1 in cqs. (31) a i d  (32), we obtain 

G = Gi(1 + 2.5~)  (33) 

v = 0.5 (34) 
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(32) 

The same relation as eq. (33) holds for the Young’s modulus El because of 
v = 0.5, that is 

E = Ei(1 + 2.5~)  (35) 

Equation (35) agrees with the equation previously derived by Smallwood12 
who discussed the filler effect of carbons on the modulus of rubber. 

On the other hand, when the holes are dispersed in the medium, that is 
GI>> Gz, eqs. (29) and (30) are reduced to the following forms: 

3(1 - 5vi)(1 - 
2~1(7 - 5 V i )  

v = V ’ { 1 +  (37) 

Equations (36) and (37) agree with nlackenzie’s equation’ which gives the 
elastic constant of the system having small holes. Equations (25) and 
(26) are the general expression of the effective elastic constant of the two- 
phase system dispersed by the spherical particles and, as their limiting 
cases, accord with Mackenzie’s and Smallwood’s equations. 

APPLICATION OF THE THEORY TO EXPERIMENTAL DATA 
Dynamic Viscoelasticity 

In deriving the foregoing equations, it is assumed that the medium and 
the dispersed particles are elastic. It will be allowed, however, to extend 
these equations to the viscoelastic cases by the corresponding principle. 
Moreover, if the frequency of the applied stress is small and the wave 
length in the media is sufficiently small compared with the size of dispersed 
particles, the foregoing expression for effective moduli of the elastic com- 
posite system may be transcribed to  the dynamic viscoelastic cases. 
Then, the expression of eqs. (25) and (27) are transcribed as follows: 

(38) 

(39) 

(7 - 5vi)Gi* + (8 - lOvi)Gz* - (7 - 5Vi)(Gi* - Gz*)v 
(7 - 5Vi)G1* + (8 - 1Ovl)Gz* + (8 - lOVi)(Gi* - G ~ * ) v  

G* = G1*- 

3E1* + 2E2* - 3(&* - Ez*)v 
3E1* + 2E2* + 2(E1* - E ~ * ) v  

E* = El* 

where the asterisk (*) refers to complex quantities. It should be noted 
that eq. (39) holds when the dispersed particles and the suspending medium 
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Fig. 2. Microphotograph of int,erpolymers of polybutadiene with styrene and acrylo- 
Whit,e regions are polybutadiene rubber and black regions are styrene-acrylo- nitrile. 

nitrile copolymer. 

are noncompressible. Since the Poisson’s ratio for polymer, however, is 
usually about 0.5, eq. (39) may be used for calculating the modulus of a 
system of two-component polymers. 

The theory was verified by applying eq. (39) to the system of particles of 
polybutadiene rubber homogeneously dispersed in styrene-acrylonitrile 
copolymer. This system is widely known as ABS resin and manufactured 
commercially for use in high-impact plastics. This resin is a typical 
system and consists of hard medium and soft particles dispersed as sepa- 
rated phase. The reversal case, where the hard particles are homogene- 
ously dispersed in the soft phase, corresponds to the rubber system dispersed 
by fillers, such as carbon black or silicate. Many detailed measurements 
have been made on the latter system. It is more appropriate to select 
plastics with dispersed butadiene rubber particles for verification of our 
theory, since no quantitative description has been reported on the mechan- 
ical properties of this system, and it will have some engineering significance 
to predict the properties of this system from those of the component poly- 
mers. 

Interpolymers of polybutadiene (PBD) with styrene (ST) and acrylo- 
nitrile (AN) were prepared by Dr. E. Shiraki, by the following method. 
A 50-g. portion of PBD in the emulsion state, 160 g. of water, 18 g. of ST 
were polymerized in an emulsion state at  60°C. for 4 hr. by the use of redox 
catalyst. Blends with various composition of the interpolymers and the 
ST-AN copolymer were prepared by emulsion polymerization of 60 g. of 
ST and 36 g. of AN at 60°C. for 4 hr.; the nitrogen content on analysis of 
this polymer was 7.66%. The volume fraction of PBD in the blend was 
determined from the nitrogen content. The films for measurement of 
dynamic viscoelasticity were made by the hot-press at  180°C. Figure 2 
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Fig. 3. Temperature dependence of dynamic modulus E' and loss modulus E" for the 
interpolymers of PBD with ST-AN a t  138 cycles/sec.: (-) calculated from the present 
theory; (0) experimental data for ST-AN copolymer; (0 )  PBD rubber; (a), ((3) inter- 
polymer of PBD and ST-AN for the volume fraction of PBD 0.23 and 0.34, respectively. 

is a phase-contrast microphotograph of the blend of the interpolymer used 
in this paper. White regions are polybutadiene rubber and the black 
regions correspond to the ST-AN copolymer. 

This differs clearly in appearance from the material obtained by simple 
roll-mixing of polybutadiene and ST-AN copolymer without any poly- 
merization process, in which large globules are found in a more hetero- 
geneous state. Absence of graft polymerization in the latter case is the 
reason for this difference. 

To measure the dynamic tensile modulus E* of a sample, the authors 
used a direct-reading dynamic viscoelastometer (Toyo Measuring Co., 
Ltd., Vibron Model DDV-1) which was constructed on the basis of a prin- 
ciple developed in the laboratory of the authors6 The value of loss tangent 
tan 6 is directly read off on the meter by adjusting the electrically converted 
amplitude of stress s and strain y to unity and subtracting the converted 
strain vector from the converted stress vector. The real part E' of the 
dynamic tensile modulus E*, that is, dynamic modulus, is easily calculated 
by (s/y) cos 6 .  

Figure 3 shows the temperature dependence of dynamic modulus E' 
and loss modulus E" for the interpolymers of PBD with ST and AN 
monomers (with different compositions) at  138 cycles/sec. The solid 
curves of Figure 3 are calculated by eq. (39), using the volume fraction of 
PBD evaluated by the analytical method. The Poisson's ratios of the 
particle and the medium are assumed to be 0.5. El* and Ez* in eq. (39) 
are dynamic tensile moduli of styrene-acrylonitrile copolymer and poly- 
butadiene, respectively. v is the volume fraction of polybutadiene. As 

The imaginary part E" of E*, is given by E' tan 6. 
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VOLUME FRACTION OF ST-AN VOLUME FRACTION OF ST-AN 
Fig. 4. Comparison of experiments with theory for dynamic modulus E' and loss 

modulus E" of the interpolymer PBD with ST-AN at temperatures of - 120 and 2OOC.: 
(-) calculated from the present theory; (0) experimental data. 

there are no data available for polybutadiene at  a temperature over 
-45"C., it is assumed that the dynamic modulus E' of polybutadiene at  
the temperature is 5 X lo7 dynes/cm.2 and that the loss modulus E" is 
negligibly small. Figure 3 shows that the theoretical prediction for the 
system with the volume fraction v = 0.2 agrees satisfactorily with the 
experimental results over a temperature range from - 160 to 120°C. 

Figure 4 shows the relation between the modulus of the composite sys- 
tem and its composition at -120 and 20°C. With increasing volume 
fraction of PBD, the disagreement between the experimental and the theo- 
retical results increases. This disagreement is attributable to the fact that, 
in a process of deducing eqs. (25) and (27), we ignored the interactions 
among the dispersed particles and that the particles are in a perfect spher- 
ical shape. With increasing volume fraction of polybutadiene, its shape 
is not considered to be perfectly spherical and the interaction among the 
particles will become significant. 

The equations of Mackenzie' and Smallwood2 or Smallwood and Guth' 
have been applied to a system in which the modulus of the dispersed spher- 
ical particles is overwhelmingly low or high compared with that of the 
medium. It should be noticed that eqs. (25) and (26) hold independently 
of the moduli of the dispersed particles and the medium. The equations 
of Mackenzie and Smallwood can be deduced from eqs. (25) and (26) as 
the limiting cases. 

Shear Viscosity 

When a change of hydrostatic pressure in a fluid is absent and the force of 
inertia is negligible compared with the viscous force of the fluid, the Navier- 
Stokes equation for a fluid is reduced to the same form as that of the funda- 
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mental equation for elasticity. Therefore, the viscosity coefficient r]  of a 
composite system consisting of a viscous fluid of viscosity rl in which spher- 
ical particles of viscosity v2 are homogeneously dispersed can be calculated 
by the aiialogous method as in elasticity. The formula obtained agrees 
with the equation for shear modulus, being different only in the point 
that the shear modulus G is replaced by the shear viscosity, that is, 

Equation (40) also holds for the complex shear viscosity v * ,  when the 
frequency of the applied shear stress is small enough for the inertia force 
and the wave length in the fluid is sufficiently small compared with the size 
of dispersed particles. This relation is entirely the same as that between 
elastic shear modulus G and complex shear modulus G*. Equation (41) is 
obtained from eq. (40) 

Experimental verification was conducted on the composite system of 
linear polyethylene (PE) and polybutene-1 (PB-1). Pellets of PE and 
PB-1 were mixed by hot rolling a t  about 150°C. for 20 min. and pressed 
to form a sheet 2 mm. in thickness. 

The viscosity of the specimen was measured by use of a parallel plate 
plastometer of the commercial type. After the sample was heated at  the 
desired temperature, the load was applied to two parallel plates and the 
distance between the two parallel plates was read off as a function of time. 
The shear viscosity was determined by a standard method. The fact 
that the satisfactory linear relation between the square of reciprocal dis- 
tance of the parallel plates and time was obtained shows that the viscosity 
determined corresponds with the Newtonian viscosity. Measurements 
were made by Dr. Yujiro Kosaka and Mr. Masatoshi Sato of Toyo Soda 
Co., Ltd. 

Figure 5 shows the relation between the zero-shear viscosity and the 
composition a t  161 and 182°C. The upper solid curves in Figure 5 were 
calculated by eq. (40), assuming that the particles of PE were embedded in 
the matrix of PB-1. The lower solid curves were calculated assuming that 
the particles of PB-1 were embedded in PE. The Poisson ratios of both 
PE and PB-1 were assumed to be 0.5 in the calculation. With increasing 
volume fraction of PE, the experimental values of viscosity gradually 
increase and deviate from the lower theoretical values. When the fraction 
increases by 20-30%, the experimental curves deviate remarkably from 
the lower theoretical and finally approach the upper theoretical curves. 
As a whole, the experimental curves assume an S shape. This is inter- 
preted as follows. The viscosity of the two-phase system, which consists 
of PE in which a little of inclusion of PB-1 of high viscosity is embedded, is 
close to the viscosity of PE and may be determined theoretically by the 
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Fig. 5. Comparison of experiment with theory for zero-shear viscosity of composite 
system of polyethylene and polybutene-1 a t  temperatures of 161 and 182°C.: (0) experi- 
mental data; (+-)theoretical curves (upper curves calculated on assumption that PB-1 
particles are embedded in a PE matrk; lower curves calculated for PE embedded in a 
PB-1 matrix). 

eq. (40) under the condition that inclusions of PB-1 are dispersed in a 
matrix of PE. For the system that consists of PB-1 in which a little PE 
is dispersed, the eq. (40) is also available, being different only in the point 
that the material of the matrix of the former system is the inclusion in this 
case. In the intermediate fraction, the inversion of material of a matrix 
is occurring, and it is impossible to classify inclusions from a matrix. 
Therefore, i t  is reasonable that the theoretical result disagrees with the 
experiment. Such an inversion generally occurs with increasing fraction 
of inclusions. 

The curve of viscosity of the two-component system versus its composi- 
tion generally assumes an S shape. Such a phenomenon also occurs with 
the modulus of polymer blends. Considering the inversion of the material 
of a two-phase matrix, the theory gives satisfactory results. However, 
the S-shape phenomenon cannot be expressed in detail by the theory. 

The authors would like to  express their sincere thanks to  Dr. E. Shiraki for his 
preparation of interpolymer of polybutadiene with styrene and acrylonitrile. They also 
thank Dr. Y. Kosaka and Mr. M. Sat0 for measurement of viscosity of polymer blends. 
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Un essai d’kvaluation de la constante 6lmtique apparente d’un systbme B deux phases 
G au d6part de celles des composants du systbme a 6t6 d6crit. (L’expression du module 
G est donnee dans le rksumk anglais); G1 et Gz sont les modules du milieu de suspension 
et des particules en suspens respectivement, ~1 est le rapport de Poisson du milieu et Y 

la fraction de volume des particules. Le resultat concernant le module a Btk etendu 
la viscositk dynamique par le principe de correspondante. Des vkrifications expkri- 
mentales concernant la viscositk dynamique ont k t k  effectuees sur le systbme du copoly- 
mbre styrbne-acrylonitrile avec des particides de polybutadibne. 1)es verifications 
expi‘rimeiitales coiiceriiaiit la viscosit6 de cisaillemeiit ont 6t6 effectu6es stir uii systbme 
form6 de poly6thylbne liiikaire et de polybutbne-1. 

Zusammenfassung 
Eiii I’ersuch zur Ermittluiig des scheinbaren Elastizitiitsmoduls cines Zweiphasci t- 

systems, G, aus deli Moduln der Komponeriten des Systems wurde uiiternommeii. 
(Den Ausdruck fur den Modul G siehe englische Zusammenfassung) Das Ergebriis fur 
deri Modu4 wurde in entsprechender Weise auf die dynamische Viskositat ausgedehnt. 
Eine experimentelle Bestatigung der Aussagen fur die dynamische Viskositat wurde 
am System der Interpolymerisation des Styrol-Acrylnitrilkopolymeren mit Poly- 
butadienteilchen gewonnen. Eine experimentelle Bestatigung bezuglich der Schub- 
viskositat wurde an einem zusammengesetaten System aus linearem Polyiithylen und 
Polybutan-1 durchgefuhrt. 
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